Special Topics in Cryptography

Mohammad Mahmoody

Last time

- Pseudorandom Functions
- PRFs → CPA secure encryption

Today

- Authentication (MAC) using shared keys
- Getting MACs from PRFs
- Security against active attacks (CCA security)

•

PS 2 extension

• Due end (10pm) of 28th (Wed).

PS2 clarification for problem 3

$$M = M_{1} M_{2} M_{3} - M_{\ell} = M_{1} M_{2} \dots M_{\ell} = M_{\ell} \| M_{2} - M_{\ell} \|$$
• Enc(key, m; r) = [Enc(key, m_{1}; r_{1}) || ... || Enc(key, m_{\ell}; r_{\ell})]
= (r_{1}, r_{2} - r_{\ell})
CPA security
Scales.
Singe-message security does NOT such.
Enc(k,M_{1},M_{3},M_{1})) = (Enc(k,M_{1}), Enc(k,M_{3}) -)
M = [M_{1},M_{1})
$$M = [M_{1},M_{1})$$

$$M = [M_{1},M_{1})$$

Review: randomness in encryption

Enc(m)- Encryption's own randomness is usually *not* revealed (even though we did reveal it in our specific construction last time) Yand omized.) $\rightarrow \gamma$ $\chi \in \{0,1\}^{\bigstar}$ $\{K\} = n : sec param.$ secret wey, secret wey, sencrypt (m)=l.:) ~) = L Dec encrypt [m] = l: Pick r of length n secret key output $C = \begin{bmatrix} r, m \bigoplus_{k} F_{k}(r) \end{bmatrix}$ $M = F_{k}(r) \bigoplus_{k} (r) \bigoplus_{k} m$ bitwile XOR

Enc(k,m;r)

What CPA security guarantees

- It guarantees multi-message security (passive attacker)
- It also guarantees a semi-active attacker (somehow obtaining encryptions of messages that they choose.)
- It does not say anything about "active" attacks. What are they?

What could go wrong with a \checkmark () resending u CPA secure scheme? message. 2 ve-sendig Fresh crappions? (3) modify the tomerrage. Flip the C=[r, m(D) F_k(r)] last bit of Ciphertext. Ciphertext. Ciphertext. Ciphertext.

Authentication: How would Bob know Alice sent this message? ... if Eve is not passive anymore...

Authentication

- Could be applied to ciphertexts, but it is a meaningful notion on its own, even for plaintexts without any encryption involved...
- In the private-key (i.e. symmetric-key) setting it is called: Message Authentication Code (MAC)
- There is a "public-key" version of the same thing known as: "Digital Signatures". We will talk about it later.
- If combined with CPA-secure encryption **properly**, gives rise to a more secure encryption that handles "active" attacks as well..

Message Authentication Code

- Alice and Bob share key k. potentially potentially tovardemail be tovardemail be tovardemail be totag_m and sends: [m, tag_m]
- Bob receives $[m, tag_m]$ runs $Verify_k(m, tag_m)$ and accepts or rejects key Completens: $\forall m, \forall k$, $\forall erf_k [m, MA(_k(m)] = 1$ Soundness: How to define security?
 - Infeasible for Adv to generate a valid $[m, tag_m]$ (Bob Huight So)

• Adv gets to see $[m, tag_m]$ for many chosen m's before forging for a new m $[poly(n) many [m, tug_m]$ seen by adv.

Formal definition of security

The message authentication experiment $Mac-forge_{A,\Pi}(n)$:

1. A key k is generated by running $Gen(1^n)$.

Sel

yume

for

MAC

- 2. The adversary \mathcal{A} is given input 1^n and oracle access to $Mac_k(\cdot)$. The adversary eventually outputs (m, t). Let \mathcal{Q} denote the set of all queries that \mathcal{A} asked to its oracle.
- 3. A succeeds if and only if (1) $\operatorname{Vrfy}_k(m,t) = 1$ and (2) $\mathfrak{Q} \not \in \mathcal{Q}$. In that case the output of the experiment is defined to be 1.

DEFINITION 4.2 A message authentication code $\Pi = ($ Gen, Mac, Vrfy)is existentially unforgeable under an adaptive chosen-message attack, or just secure, if for all probabilistic polynomial-time adversaries \mathcal{A} , there is a negligible function negl such that:

think about

nonestly tagged by Alice

k of i+ us the new message chosten by Adv

as lift of

> think of it

 $\Pr[\mathsf{Mac-forge}_{\mathcal{A},\Pi}(n) = 1] \le \mathsf{negl}(n).$

Constructing MACs using PRFs

- Suppose $F_k(\cdot)$ is a PRF with key, input, output lengths $n, \dot{*}, \ell = 1$
- How do we generate MAC tags for messages?

(m) st Vertz (m, t)) $m,t): \int \frac{1}{k} \frac{1}$ $l \neq lg(n)$ $l \neq 0(lg(n)) bad!$

arbitian,

Keal. $MA((\cdot) =$ \$\$¥ 'tag TR & prob Winnig **Proof of Security** m 1 Real Twins (if t= Fk(m). Ided WorL: also MR Q={ set of querier] M,7 Fu(.) is substituted with R(.) R is a function of From all faction mapping ho 117 to ho 1) it pick R(x) at SR has no pre-chosen answers. given any X. Fundom and saver 1+ in case x is asked again. n Ided. Goal 1 : PIK neg. Proof. R(m) is picked (PI) Goal 2: |PI-RI=neg. randomly independent of t Formally: attacker APRF First runs ADV_imit then APRF asks m from Oracle O(m) = t if [B-PR]>non-neg. _ APRF wins in breaking PRF Fk(.) $P_{i}[R(m)=F] = 2^{n}$ wins if m& G=) quere. } M, t

Chosen cipher-text security:

• combining CPA security with MACs to handle active attacks.

